本企业拒绝造价,假冒伪劣者请自重,否则将直接向相关厂家及工商部门举报!

苏州印象店招

搜索

热搜产品: 

客服中心

联系苏州印象

最新推荐资讯  / News

2020中国食品安全溯源与智能包装技术论坛
产品防伪:阳澄湖大闸蟹真伪识别
产品防伪:真假阿胶识别技巧
2020包装印刷年会圆满落幕
光学结构色,这种颜色你听说过吗?
AR眼镜的光学显示原理和工艺分享(一)
带你揭晓最新防伪技术:"三维微光 "
从绿卡制度的推出来谈谈证件防伪
第十六届证卡票签安全技术展览会暨高峰论坛正式定档
光学纹理:这么美的纹理你一定没见过!
除了香烟拆封线,防伪线的应用行业还有哪些?
防伪标签可以应用于哪些行业?

服务保障  / Service guarantee

合作服务过多国政府,
证卡项目10多个

创立“无墨印品”
“微纳纹理”“易鉴”
3个品牌  

产品出口30多个
国家和地区

光学加密综合
防伪技术

扫描即可获得

产品防解决方案

提供专业防伪
标签解决方案

拥有制版核心
技术20多种

业务经理:18100687367(微信同号)
外贸经理:18012780003(微信同号)
业务 QQ:2880603301
公司地址:江苏省苏州市吴中区
兴中路28号,智建工业园H栋

页面版权所有 - 苏州印象镭射科技有限公司  |  Copyright - 2018 All Rights Reserved. 
《中华人民共和国电信与信息服务业务经营许可证》 苏ICP备14010139号

合作客户

五粮液【防伪标签】设计方案
黄鹤楼防伪烟包整体防伪解决方案设计
食品类防伪标签设计方案
中国石油证卡防伪膜设计
广州亚运会证卡防伪膜供应商
古井贡酒【防伪包装】解决方案设计

防伪资讯   / Security information

结构色,蒙娜丽莎的微笑

作者:
苏州印象镭射
来源:
www.gzlaser.com
日期:
2019/07/15 11:32
摘要:
审稿:秦德韬(京都大学细胞-物质统合科学研究所Sivaniah研究室特定研究员);蒋涵东(京都大学Sivaniah研究室分子工学研究生)  来源:我是科学家iScientist 想象一下,假如给你一张1毫米宽的画布,没有笔,也没有颜料,你能否在上面绘制出一幅清晰的画作呢?你或许会觉得这个任务太难,甚至完全不可能实现。 但最近,日本京都大学细胞-物质统合科学研究所(iCeMS)EasanSivani

 

审稿:秦德韬(京都大学细胞-物质统合科学研究所Sivaniah 研究室特定研究员);蒋涵东(京都大学Sivaniah 研究室分子工学研究生)

 

 

来源:我是科学家iScientist

 

想象一下,假如给你一张1毫米宽的画布,没有笔,也没有颜料,你能否在上面绘制出一幅清晰的画作呢?你或许会觉得这个任务太难,甚至完全不可能实现。

 

但最近,日本京都大学细胞-物质统合科学研究所(iCeMS) Easan Sivaniah教授带领的研究团队,就创造出这样的奇迹,他们绘制了迄今为止世界上最小的名画——“神奈川冲浪里,宽度仅有1个毫米。

 

更令人不可思议的是,这张画没有使用任何颜料或墨水

 

 

神奈川冲浪里(又名巨浪)是一幅彩色浮世绘版画作品,它是日本艺术界的泰坦葛饰北斋(1760-1849)的代表作,原画尺寸是25.7cm×37.0cm。图片来源:iCeMS

 

 

这项研究颠覆了传统打印理念,研究成果已于本月(20196月)发表在顶级期刊《自然》(Nature)杂志上[1],其中有两位研究成员(秦德韬与蒋涵东)来自中国。

 

人类自古就有追求艺术的天性。早在三万八千年前,印度尼西亚人就用赭石在“Lubang Jeriji Saléh”洞穴的墙壁上绘制出公牛的图形,留下人类已知最早的具象绘画。从那时起,人类就在不断尝试各种绘画创作。自上古石器时代的手绘,到后来的水墨画、油画,再到今天的各种街头艺术,几乎都离不开对墨水颜料的依赖。就算是数字绘画,想要将它们打印出来,同样离不开墨盒。

 

 

目前已知最早的具象手绘:Lubang Jeriji Saléh洞壁上的公牛。图片来源:Nature|Luc-Henri Fage

 

然而,在大自然中,却存在着不用颜料就可以呈现缤纷的色彩的现象,比如蝴蝶的翅膀,昆虫的甲壳,以及那些有虹彩效应的鸟羽。地球上许多的生物的颜色,实际上并不是化学色素,而是通过其表面结构和光线之间的相互作用,产生令人目眩神迷的斑斓色彩。这种非颜料型的色彩现象被称为结构色

 

金龟子的结构色及其微观结构。图片来源:Wikimedia Commons、参考文献[2]

 

 

那么问题来了,我们能不能利用结构色的原理来绘图呢?答案是肯定的。这次iCeMS团队创造的新型打印技术,就蕴含着结构色的原理。

这样的结构色是如何制造出来的呢?

 

原来,在聚苯乙烯等高分子材料中存在着一种特殊现象——当这些高分子受到水平方向上的拉力时,会产生细长的纤维,即原纤维,原纤维的形成会产生强烈的视觉效果。打个比方,拿起一把透明塑料尺反复掰,尺子受力的部分就逐渐变成半透明的白色。

 

iCeMS的研究人员发现,通过控制微观下原纤维的形成过程,并按一定的规律来排列,排列后的原纤维就会反射不同光线产生鲜亮的色彩。

 

无墨打印原理示意。图片来源:参考文献[1]

 

 

打印过程需要先制备光敏聚合物薄膜,然后在薄膜中引入光学驻波,这种驻波的作用是给材料分层施加能量。于是薄膜上就有了获得能量的交联层和没有能量的非交联层交替排列,使交联层间产生应力。将薄膜放入相应溶剂,非交联层会生成细小纤维释放应力,形成能够干涉光线的层状结构。

 

以《蒙拉丽莎》为例,打印纸是硅片,墨水是聚苯乙烯。打印过程需要先将光敏高分子溶液涂在硅片上形成薄膜,然后把薄膜放在micro-led仪器中进行交联(micro-led是一种光学仪器,仪器上有成千上万个小的led灯,每个led灯可以独立开关)。

 

iCeMS的研究人员正在超净间中操作micro-led。图片来源:iCeMS

 

 

在交联前,研究人员会将蒙娜丽莎的图片在电脑中转成CAD的图片格式,由micro-led读取CAD格式,并控制各个小灯的亮和暗(比如,蒙娜丽莎的面部有颜色,那么位于蒙娜丽莎面部上方的那些小led灯是开着的,从而这部分的薄膜被交联了;而她的头发是黑的,那么位于头发上方的的小led灯是关闭的,这部分的薄膜就没被交联)

 

蒙娜丽莎图片转为CAD格式示意图。图片来源:参考文献[1]

 

 

将交联好的薄膜在溶剂中浸泡一段时间,交联部分的薄膜在溶剂中应力释放,形成层状结构,未交联部分没有层状结构,这样一来,图案就能显现了。

 

这一发现被命名为组织性微纤维化(Organized Microfibrillation, OM),它的色彩范围能够覆盖由蓝到红整个可见光光谱。从此,一种革命性的新型调色板产生了。有了OM无墨打印,印刷再也不必受限于墨水和颜料。

 

使用不同的分子量的聚苯乙烯和不同交联照射光波长,能得到各种各样的颜色。图片来源:参考文献[1]

 

 

与传统打印相比,这种无墨打印技术实现了很多新的突破。比如它打印出的图案分辨率可高达每英寸14000点数,也就是说每英寸(2.54厘米)的长度上放置14000个墨点。而目前喷墨打印机所能达到的理论极限是4800点数,但如果真的在普通的纸张上用这个规格来打印,纸张对墨水等吸收过饱和,墨水就会糊成一团。

 

运用OM无墨技术打印出亚毫米级别的高清艺术图案。你看到蒙娜丽莎的微笑了吗?图片来源:iCeMS

 

与此同时,这种打印技术的应用范围也很广。京都大学的研究人员已经证明,这项无墨打印技术适用于多种常用的聚合物(如聚苯乙烯和聚碳酸酯),能在各种饮料瓶、食品药品塑料包装;同时也适用于在透明的玻璃材质上进行打印。人们可以使用这项技术来制造类似水印的安全标签,以显示产品是否被打开过包装或遭到过破坏,抑或是用来制造塑质钞票上的防伪图案。

 

显微镜下OM打印呈现出的多层微孔结构。图片来源:参考文献[1]

 

另外,从显微镜观察可以发现,这项技术印制出的高分子是一种多层微孔结构。这种结构能够让液体或气体流入,并在其内部实现连通,同时这种网状结构又具有透气性和可穿戴性特色。人们或许可以依此制造出一种柔性的流体线路板,将其安置在人皮肤表面或者隐形眼镜内。皮肤或眼睛的分泌物流入线路板微孔后会造成多层结构物理性质的改变,对这些物理性质进行分析就可以收集到人体相关的生物医学信息,然后通过信号传输及时上传给云数据空间或医护人员。

 

 

论文的第一作者伊藤真阳表示,未来可以在多项基础科学领域延伸这一突破性研究。我们已经展示可以在亚微米尺度上通过控制应力从而控制高分子的结构”“而我们知道,金属和陶瓷承受应力时也能产生裂纹。如果未来能用类似方法在这些材料也实现对裂纹形成的操控,将会同样令人激动振奋。

 

结构显色,一定是未来更安全、更环保的色彩表达方式。苏州印象镭射科技有限公司正在不断的尝试用物理结构(微纳米光学技术)显色来代替传统的油墨印刷,在证卡防伪、标签、包装、装饰等领域做推广应用,并且取得了一系列应用成果。

 

图片来源:苏州印象

 

 

如今已经有越来越多的科学家、研究院、企业家投身到无油墨印刷的研究领域,也发现了各种不同的表达方法,相信在未来必将大放异彩。

关于无油墨印刷技术,我们会持续关注。

 

 

作者:Yuki

 

 

题图来源:iCeMS

 

 

参考文献:

 

 

[1] Structural color through organized microfibrillation in glassy polymer films. Masateru M. Ito, Andrew H. Gibbons, Detao Qin, Daisuke Yamamoto, Handong Jiang, Daisuke Yamaguchi, Koichiro Tanaka & Easan Sivaniah. Nature. 570, 363367 (2019) (玻璃性高分子组织性微纤维化产生结构色彩)

 

 

[2] Arwin, H., Berlind, T., Johs, B., & Järrendahl, K. (2013). Cuticle structure of the scarab beetle Cetonia aurata analyzed by regression analysis of Mueller-matrix ellipsometric data. Optics express, 21(19), 22645-22656.

 

防伪技术

防伪技术哪项强——光学防伪已霸榜!
如何认识全息激光镭射防伪?
镭射防伪标签上的常见防伪技术
三维全息真彩色技术和无墨印品的那些故事
全息透镜:立体凸透镜猫眼防伪技术介绍
蚀刻防伪技术如何使镭射效果更美观?
动态三维防伪技术的形成及应用

热销产品推荐   / Hot products

客户问答

为什么我们的产品称激光防伪和镭射效果不规范不科学
微纳结构图文呈现与传统印刷图文表现在技术最大的区别是什么?
定制防伪标签的价格是多少?影响价格的因素有哪些?
贵公司能做小批量防伪标签定制吗?
市面上定做镭射防伪标签的很多,看起来类似,为什么有的防伪标签价格偏高?
防伪标签是怎么防伪的?是不是看起来越亮越好
定制防伪标签,你们的交期是多久?付款方式是什么样?